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Abstract 

The design of ecological studies, whatever their size, requires identifying 
appropriate questions and hypotheses, identifying the information that is needed 
to address the questions, and then determining the methods to obtain that 
information. Ecologists are faced with a grand intellectual and practical 
challenge: understanding how living systems will respond on a human-dominated 
planet.   The changes triggered by human domination of climate, fragmentation 
and global species distributions challenge the theories, experimental approaches 
and culture of ecology. How can we enable understanding and forecasting of the 
impacts of climate change, land use change and invasive species on continental-
scale ecology by providing infrastructure and consistent methodologies to 
support research and education in these areas.  

Introduction 

Successful design of an ecological study, whatever its size, requires identifying 
appropriate questions, determining the information that is needed to address the 
questions, and then determining the methods whereby that information will be 
obtained (Lindenmayer and Likens 2010).  In the new millennium, ecologists are 
faced with a grand intellectual and practical challenge: understanding how living 
systems will respond on a human-dominated planet (Turner II et al. 1993).  The 
changes triggered by human domination of climate, fragmentation and global 
species distributions test the theories, experimental approaches and culture of a 
field whose theory is deeply rooted in equilibrium concepts and just making the 
transition to a more dynamic view (Golley 1996, Gunderson et al. 2006).  This 
challenge requires studies that cross levels of biological organization, understand 
processes at scales larger than traditional field sites, recognize the importance of 
direct and indirect human influences, and capture the nonlinear and chaotic 
dynamics of ecological systems.  Many of these new ecological questions require 
answers that integrate over huge areas (Pacala et al. 2001)(Schimel et al 2001), 
or involve transport of organisms or material over long distances (Chadwick et al. 
1999).  

Ecological systems as complex dynamical systems 

Forecasting the future behavior of ecological systems poses many challenges 
because of the largest being the complex, contingent and nonlinear behavior of 
the environment (McNaughton 1983, Hobbs et al. 1991). Ecological systems are 
known to exhibit nonlinear behavior, possess alternative states and may exhibit 



complex, nonperiodic behavior and chaotic dynamics (Pastor and Cohen 1991, 
Scheffer et al. 2001). Complex dynamics were proposed for the atmosphere by 
Ed Lorenz (1963) and demonstrated in ecological models by May (2001).  
Ecological systems are strongly driven by the deterministic chaos of the 
geophysical system, while also being influenced and constrained by the complex 
structure of the evolutionary landscape (Kauffman and Johnsen 1991). 
Ecological systems are subject to multiple stresses (Field et al. 2007) and so the 
number of variables whose interactions can produce complex dynamics is very 
high (Schimel et al. 2005) 

Prediction is complex systems requires specialized mathematical approaches. In 
ecology, complex behavior is often probed with experiments, and while 
experiments are crucial, they are strongly complemented by another emerging 
paradigm, that of ecological forecasting.  Ecological forecasting has some 
features in common with weather forecasting.  In weather forecasting, a 
mechanistic physical model of the chaotic atmosphere is initialized with 
observations, integrated forward and then compared to the next set of 
observations, allowing the model skill score to be computed from the 
resemblance between the model and observations, averaged over space.  

Through the forecast-analysis cycle, forecast models have been evaluated under 
thousands of regimes (El Nino, La Nina, droughty, humid, dusty, affected by 
volcanoes, and so on) and experience has been accumulated about its behavior 
under these conditions.  Each prediction step constitutes an evaluations of the 
hypotheses embodied in the model.  While each forecast-analysis cycle does not 
constitute a definitive test, the discipline of regular forecasting results in 
accumulating many, in the case of meteorology thousands to millions, of 
hypothesis tests.  This is a vital methodology for problems that occur at scales 
too large to capture in manipulative experiments. The type of learning and 
cumulative hypothesis testing of Earth System-scale problems is for the most 
part unavailable to ecologists, who are usually compelled to generalize from 
small-scale experiments, and short-term, localized or partial data.   

Strategies for observing and forecasting the behavior of the atmosphere are 
guided by theory.  Understanding the mathematical nature of chaotic behavior in 
the atmosphere has allowed the development of observing and analysis 
strategies that allow efficient prediction in the presence of chaos (Kalnay 2002, 
Lewis et al. 2006).  Chaotic systems, by definition, are ones where small 
differences in initial conditions can cause exponential diverging trajectories.  
Since observations can never be perfect, very small errors in observations can 
cause large prediction errors. In meteorology this has led to the development of 
data assimilation techniques where simulated state variables are regularly 
updated using observations to correct the drift inevitable in a chaotic system.  
Ecologists have begun to use such approaches (Raupach et al. 2005).   

Ecology may also rely on forecasting approaches other than classical prediction. 
In ecological systems attention has focused also on developing models of 
qualitative behavior preceding impending regime transitions (grass to shrub, 



population collapses and so on).  Often such transitions are preceded by 
changes in variability (Scheffer et al 2009).  Detecting changes in variability in 
time and space requires adequate sampling: sampling adequate to observe 
central tendencies may not be adequate to characterize variability.  As will be 
discussed below,  

Manipulative experiments designed to probe the dynamical behavior of 
ecological systems 

Conceptual model for observing systems 

The NEON design is strongly guided by conceptual models, in addition to the 
overarching complex systems perspective. Two basic linked conceptual models 
have guided NEON design.  The first model deals with change in time and space, 
and the second with integration of information across scales.   

Most observing systems are not built around a cause-and-effect model but 
instead seek to efficiently monitor a small number of either driver or response 
variables.  For example, the NOAA Climate Reference Network 
(http://www.ncdc.noaa.gov/crn/) measures climate but not impacts.  At the other 
end of the spectrum, the USFWS Breeding Bird Survey 
(http://www.pwrc.usgs.gov/bbs/) measures impacts in the avifauna, but does not 
include measurements of any hypothesized causes of change in avian 
communities (Faaborg et al. 2010).  Very few observing systems measure any 
key indicators of feedbacks and interactions. Quantitative forecasting requires 
gaining a mechanistic understanding and dictates measuring key drivers of 
change, parameters of feedbacks and interactions and impacts of changing 
drivers.  As a consequence, observe systems must address a carefully selected 
set of drivers of change (for example: temperature, incoming solar radiation and 
precipitation, nutrient deposition, land cover).  Measures of interactions and 
feedbacks include soil moisture, functional gene expression, element 
stoichiometry, species changes in multiple taxa, parasite and disease burden and 
isotopic indicators of metabolism.  Measures of impacts include species 
composition and diversity, invasive species abundance, primary productivity, and 
phenology.  Of course some measurements may fit into more than one category: 
invasive species can be both a cause of and a response to environmental 
changes.   

A second conceptual model focuses on how processes at different spatial scales 
interact. Fundamental processes in the environment occur at multiple scales.  
Metabolism and physiology occur in cells and organisms.  Behavioral and trophic 
interactions occur between organisms at somewhat larger scales, up to the 
continental scales of migratory birds and Lepidoptera, and long-range 
movements of invasive species.  Ecohydrology and biogeochemistry play out at 
these larger scales through atmospheric, hillslope and riverine transport of 
gases, water and suspended or dissolved substances.  Coherent patters of 
climate variability (for example, the El Nino) and change affect huge regions in 
spatial patterns dictated by global processes (Wang and Schimel 2003).  Multiple 
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scales of process in the biosphere produce the stocks and fluxes and patterns of 
matter and patterns of abundance and diversity that we observe in nature. 

An Observatory may observe nature using either site-based (stream reach, plot 
and tower) or spatial (remote sensing) techniques from which we must 
reconstruct the multiple scales and scale interactions that occur in nature.  
Critically, spatially extensive measurements must constrain a critical process, 
measured at local scales, so that process models can be extrapolated in space.  
Researchers can bring intensive experimental or process study data together 
with remote sensing (and other continental survey data, such as the Forest 
Inventory Analysis) using mathematical or statistical models to reconstruct the 
underlying organismal and ecological processes. 

 

Sampling spatio-temporal variability: the roles of site selection and 
technology. 

Sampling ecological processes over large regions is a long-standing challenge to 
ecology. Ecosystems, as dynamical systems, respond differently in different 
regimes (eco-climatic conditions) and so one of the main goals driving the design 
is to observe as much variability in conditions as possible.  
 
Statistically efficient sampling can only go so far to address ecological 
heterogeneity.  Ecological extrapolation is almost always limited by a paucity of 
appropriate spatially extensive data.  To complement the stratified site selection, 
some long-standing issues of spatial extrapolation must be addressed using 
innovative technology.  Airborne remote sensing can bridge from the organismal 
to the regional scale by providing measures of canopy nutrient content, leaf area, 
chlorophyll and photosynthetic capacity, total biomass and canopy height at an 
individual tree scale (1-2 m ground resolution) for all trees or shrubs within a 200-
400 km2 km region.  Current (or in design) systems can observe structural and 
chemical measurements for 1 to 30 million trees per scene, and could be 
repeated annually.  To put this number in perspective, 5 to 10 scenes will sample 
approximately the same number of individual trees as the entire US Forest 
Inventory Analysis program. Local and remotely sensed information can be 
combined using relatively recent statistical techniques to provide data products 
with quantitative estimates surfaces and corresponding uncertainty (Huang et al. 
2002, Johannesson and Cressie 2004, Tzeng et al. 2005, Wikle and Berliner 
2005, Cressie and Johannesson 2008).  

In addition to a spatial sampling approach, researchers also needed guidelines 
for temporal frequency of sampling.  We analyzed the requirements for detecting 
decadal and longer trends.  In analyzing this, consider two requirements for an 
observatory.  First, can the Observatory detect trends?  For example, could we 
detect a systematic change over time, even if there was noise in the observations 
and measurement error?  This type of analysis is fairly conventional and is 
described in Schimel et al (2009).  Second, and more challenging, could we 



attribute observed trends to specific drivers?  In other words, could we link 
drivers and impacts to help researchers establish hypotheses about causation?  
Could we measure or infer model parameters for the interactions and feedbacks 
that linked the drivers to the responses?  This question may be addressed via 
simulation.  These simulations can build on the the driver-interaction/feedback-
impact conceptual model . 

Ecological trends can be modeled with five main components: 

1. The magnitude of the trend.  
2. The intrinsic variability of the trend 
3. The relationship between the forcing and the response.  The response 

may be more or less sensitive, and the form of the response may be linear 
or nonlinear, and may vary in space and as a function of other variables. 

4. The error of the measurement.  This includes the accuracy and precision 
of the measurement technique and adequacy of sampling in time and 
space. 

5. The number of measurement locations (replication) and how correlated 
drivers or responses are between locations. 

 

By simulating responses under varying levels of the factors above that influence 
observations, potential opportunities and weaknesses can be identified.  We 
made assumptions about the magnitude of trends, amount of interannual 
variability and structure of spatial correlations among locations and assessed the 
network sensitivity using annual time-scale information because quantifying long-
term changes is a fundamental requirement.  Within the network of expected 
ranges for magnitude of trend, interannual variability, and correlation among 
locations, we analyzed simulation results for bounding levels of measurement 
error. In this case, measurement error includes instrumental or observer 
accuracy and precision, sampling or representativeness error and errors 
associated with data processing algorithms.   

We simulated the relationship between a hypothesized forcing and an ecological 
response, and again created simulations to test the ability of a spatially-distibuted 
network to 1) detect a trend in an ecological response, 2) identify whether the 
relationship between forcing and response is linear or nonlinear, and 3) 
determine the ability of the network to estimate the parameters of the relationship 
between forcing and response (eg, for response = a b ekforcing where a b and 
k are parameters).  These analyses are substantially more complex.  The results 
are encouraging for the ability of the network to detect and determine the form of 
complex non-linear relationships, or to attribute changes to specific processes 
(Duffy et al submitted).  Quantitatively retrieving the parameters of ecological 
relationships is challenging and highlights the need for process studies and 
experiments linked to time-series observations.   

Summary 



While theory and observational science are often separate, or linked in the 
analysis phase, addressing the grand challenges of ecological sustainability 
requires a new approach to designing observations, on the one hand, and on the 
other hand, designing theory and models that reflect the nature of the actual (not 
idealized) system.  This is because simulation and prediction in complex systems 
requires integrated mathematical and observing approaches.  The observing 
systems must address the key driver, process and outcome variables, and the 
models must recognize the impact of uncertainty in observations on the 
predictability of the system.  Moving towards a future where the predictability of 
ecological systems (what can be predicted, how well can it be predicted, what 
information is needed for a prediction, what is the intrinsic time horizon of the 
prediction) is understood will require a new partnership between mathematicians, 
ecological theoreticians and modelers and observational scientists. 
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